Nano-Agrochemicals: Risk Assessment and Management Strategies

Mahendra Prasad and Sonu Kumar Mahawer*

Crop Production Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh (284 003), India

Introduction

In agriculture several inputs such as seed, irrigation, pesticides, fertilizers, plant growth hormones are required for boost up the quality and production of agricultural products. Agrochemical refers to any substance employed by humans to assist in the maintenance and enhancement of agricultural ecosystems. These substances encompass fertilizers, agents for altering soil pH (liming and acidifying agents), soil enhancers, pesticides, as well as chemicals utilized in livestock farming, such as antibiotics and hormones (Anonymous, 2022). The unregulated application of these chemicals has led to a significant boost in food production, but it has concurrently resulted in a decline in food quality, soil fertility, and overall environmental well-being. According to Bollag et al. (1992), approximately 50-70% of chemical inputs are lost due to processes such as leaching, mineralization, and bioconversion, contributing to significant wastage in agricultural practices. Apart from the impact on human health, these chemicals have also disrupted various sublevels of ecosystems, including soil microbial communities, parasites, marine environment, etc. (Chhipa, 2017). So there is a need to replace these conventional agrochemicals with new generation smart agrochemicals like nano based agrochemicals for sustainable agriculture. Nanotechnology holds tremendous promise to revolutionize the current agricultural landscape through the development of innovative tools tailored for agricultural applications (Joseph and Morrison, 2006).

Nano-agrochemical is a consolidation of nanotechnology and agrochemicals. Currently, these nano-agrochemicals got popularized owing to their superior efficacy in comparison to conventional agrochemicals, rendering them economically viable and environmentally friendly alternatives (Chhipa, 2017; Qazi and Dar, 2020). All of the leading producers of agrochemicals are focusing on the research about nanotechnology for use in agricultural practices (DeRosa et al., 2010). Over the past decade, several companies have already filed patents consisting of a diverse array of production and application protocols for nano-pesticide formulations (Peters et al., 2016).

Increasing the uses of nanotechnology in agriculture raises questions in concern with human and environmental health. In this prospective, environmental and human exposure due to nano-agrochemical residues in soil and crops is...
posed to rise with potential exposure routes encompassing contamination and the possibility of bioaccumulation within the environment and food chain (Iavicoli et al., 2017). This raises concerns about the long-term impact on both ecological systems and human health.

From an environmental and human health standpoint, this underscores the increasing urgency of evaluating the risks linked to nano-agrochemicals, especially in light of numerous reports by researchers highlighting adverse effects on environmental elements (Antisari et al., 2013; El-Temsah and Joner, 2012; Joško et al., 2014; Kim et al., 2011; Roh et al., 2010) and human well-being (Bai et al., 2014; Hossain and Mukherjee, 2013; Iavicoli et al., 2011; Moschini et al., 2010).

In this review, we focussed on types of nano agrochemicals, their benefits, potential applications as well as assessment of risks associated with these chemicals and key ways to manage these risks.

Nano Agrochemicals

Nano Pesticides

The term “nano pesticide” is used to describe any pesticide formulation that “involves either very small particles of a pesticide active ingredient or other small engineered structures with useful pesticidal properties” (Kookana et al., 2014). Numerous types of nano pesticides have been developed and documented by researchers (Table 1).

Table 1: Nano pesticides in crop protection

<table>
<thead>
<tr>
<th>Nano-Formulation</th>
<th>Pesticide</th>
<th>Impact</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium carbonate</td>
<td>validamycin</td>
<td>Control release extended upto 2 weeks</td>
<td>Qian et al., 2011</td>
</tr>
<tr>
<td>PEG-400</td>
<td>acephate</td>
<td>Reduced toxicity of acephate and improved stability</td>
<td>Choudhury et al., 2012</td>
</tr>
<tr>
<td>Poly(citric acid)-poly(ethylene glycol)-poly(citric acid) (PCA-PEG-PCA) ABA type linear-dendritic copolymers</td>
<td>indoxacarb</td>
<td>Higher loading capacity and slower release rate of indoxacarb Memarizadeh et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Fluorescent photoresponsive organic nanoparticles of perylene-3-ylmethanol</td>
<td>2,4-D</td>
<td>Improved absorption by plant cells and increased water solubility as compared to conventional 2,4-D</td>
<td>Atta et al., 2015</td>
</tr>
<tr>
<td>Nano formulation with lemon oil terpenes, polysorbates and Glycerol</td>
<td>natural pyrethrin</td>
<td>Increased insecticidal activity and absence of adverse effects on non-target aphid predators</td>
<td>Papanikolau et al., 2018</td>
</tr>
</tbody>
</table>

Nano Fertilizers

Nano fertilizers fall into two categories: they are either nano-materials capable of directly supplying one or more vital nutrients to plants, thereby enhancing their growth and yields, or they are substances designed to enhance the effectiveness of conventional fertilizers, albeit without directly providing nutrients to the crops themselves (Chhipa, 2017; Liu and Lal, 2015). Various researchers have examined and documented a range of inorganic, organic, and composite nano-materials or nano-fertilizers, as illustrated in table 2.

Nano Based Soil Remediation Chemicals and Soil Conditioners

The hazards linked to soil pollution are regarded as significant threats to the entire ecosystem. Therefore, it is imperative to prioritize prevention, as well as the remediation and restoration of contaminated soil. Following successful remediation, this rejuvenated land can be harnessed to fulfill global food and energy demands, addressing a pressing need of our time (Bakshi and Abhilash, 2020). Several techniques identified by researchers for soil remediation and these techniques were categorized into 3 categories viz., (i) physical remediation which involves soil washing, thermal desorption and replacement or partial replacement of contaminated soils; (ii) biological remediation including microbial and phytoremediation; and (iii) chemical remediation which comprises of chemical leaching, chemical fixation and electro kinetic methods. These techniques are expensive, time consuming, laborious and less efficient (Dhalial et al., 2019). Apart from these several engineered nano materials were identified and tested by researchers in last few decades (Table 3).

Similarily to improve soil physical conditions several nano soil conditioners are prepared and tested recently. Kim et al. (2011) and Liu et al. (2017) have been prepared nano-submicron mineral-based soil conditioner (NMSC) from potassium-rich feldspar using environmentally friendly hydrothermal technique. In this study they reported that the soil pH was improved by 1-9% as compared to control group, and soil bulk density decreased by 8%. Aluminium concentration in soil and cadmium concentration in rice were decreased by 29-42% and 50%, respectively that indicates that this nano soil conditioner was effective in alleviating the aluminium toxicity as well as to inhibit the Cd accumulation reduction.

Nano-Particles as Plant Growth Promoting Substances

Nano-particles can exert both positive and negative impacts on plant growth (Goswami et al., 2019; Kim et al., 2011). Numerous reports indicate that various types of nanoparticles have the potential to serve as plant growth-promoting (Table 4).
Table 2: Nano Fertilizers used in crop production

<table>
<thead>
<tr>
<th>Nano Fertilizer</th>
<th>Nutrient</th>
<th>Crop</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolite Based</td>
<td>Nitrogen</td>
<td>Maize</td>
<td>The grain N content of nanozeourea on inceptisol (0.32%) and alfisols (0.76%) were higher consistently.</td>
<td>Manikandan and Subramanian, 2016</td>
</tr>
<tr>
<td>Zeolite Based</td>
<td>Nitrogen</td>
<td>Kalmi (Ipomoea aquatica)</td>
<td>The growth of Kalmi, N uptake and concentration was better in nano fertilizer treatments than in the conventional fertilizer treatments.</td>
<td>Rajonee et al., 2016</td>
</tr>
<tr>
<td>Nano-scale zinc oxide (ZnO) and ferric oxide (Fe₂O₃)</td>
<td>Zn and Fe</td>
<td>Barley</td>
<td>Days to anthesis and maturity significantly increased after application of both nanofertilizers. Considerable improvement was observed in grain mass, spike length, number of the grains spike⁻¹, chlorophyll content, grain yield and harvest index by application of nano-fertilizer.</td>
<td>Janmohammadi et al., 2016</td>
</tr>
<tr>
<td>Nano chitosan based</td>
<td>NPK</td>
<td>Wheat</td>
<td>Significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables; life cycle of the nano-fertilized wheat plants was shorter (130 Days) than normal-fertilized wheat plants (170 Days)</td>
<td>Abdel-Aziz et al., 2016</td>
</tr>
</tbody>
</table>

Table 3: Nano materials used for soil remediation

<table>
<thead>
<tr>
<th>Nano materials</th>
<th>Pollutant</th>
<th>Process of remediation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano zero valent iron</td>
<td>Chlorpyrifos</td>
<td>Degradation</td>
<td>Reddy et al., 2013</td>
</tr>
<tr>
<td>Nanomaghemite and magnetite</td>
<td>Cd, Cu, Pb</td>
<td>Stabilization</td>
<td>Michálková et al., 2014</td>
</tr>
<tr>
<td>ZnO, Al</td>
<td>Heavy metals</td>
<td>Sorption</td>
<td>Mahdavi et al., 2015</td>
</tr>
<tr>
<td>Nanosilicone</td>
<td>Lead</td>
<td>Stabilization</td>
<td>Liu et al., 2015</td>
</tr>
<tr>
<td>Hydroxyapatite</td>
<td>Cd, Zn, Pb, Cu</td>
<td>Adsorption</td>
<td>Chen et al., 2010</td>
</tr>
</tbody>
</table>

Table 4: Nano particles as plant growth promoting substances

<table>
<thead>
<tr>
<th>Nano Particles</th>
<th>Crops</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Lolium multifolium</td>
<td>Enhance plant growth.</td>
<td>Vannini et al., 2013</td>
</tr>
<tr>
<td>Zn</td>
<td>Vigna radiata</td>
<td>Increase germination, root and shoot growth.</td>
<td>Zafar et al., 2016</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Vigna radiata, Arabidopsis thaliana, Foenticum vulgare, Lemna minor, Triticum aestivum</td>
<td>Enhance germination, plant growth chlorophyll content.</td>
<td>Scott et al., 2018</td>
</tr>
<tr>
<td>Carbon Nano tubes (CNTs)</td>
<td>Glycine max</td>
<td>Increase seed germination.</td>
<td>Changmei et al., 2002</td>
</tr>
<tr>
<td>Multi-walled Carbon Nano tubes (MWCNTs)</td>
<td>Lycopersicum esculentum</td>
<td>Increase plant growth, height, flower number.</td>
<td>Morla et al., 2011</td>
</tr>
</tbody>
</table>

Potential Threats Related to Nano Agrochemicals

There is a substantial gap in the available knowledge concerning the environmental, health and ecological threats associated with the nano-agrochemicals (He et al., 2019; Shang et al., 2019). Due on their size and physicochemical properties, it is possible to cross the cell wall and bioaccumulation of nano particles when compared to larger molecules of the same material. Literature shows that nanoparticles especially engineered nano particles have both chronic and acute toxicological effect (Mwaanga, 2018). For example silver nano particles have several applications in agriculture and it is reported that these silver nanoparticles have several toxic effects such as mitochondrial dysfunction due to change in cell permeability for K⁺ and Na⁺ ions (Kone et al., 1988); induce pronounced toxic effects on the proliferation and cytokine expression of peripheral blood mononuclear cells (PBMCs), as reported by Shin et al. (2007), and toxic effects on the male reproductive system, as indicated by McAuliffe et al. (2007). Such type of toxicity may
occur in the person having direct contact while production of nano particles, exposure during application or through bioaccumulation. In addition to their impact on human health, numerous studies have demonstrated the effects of nano-materials on non-target organisms, including soil macro- and micro-organisms, as well as beneficial insects and plants. Karunakaran et al. (2013) advocated that plant growth-promoting rhizobacteria (Bacillus subtilis and Pseudomonas fluorescens) were susceptible to the toxicity of Al₂O₃, TiO₂, ZnO and SiO₂ nanoparticles (Dimkpa, 2014). Chen et al. (2011) observed that AgNPs could lead E. coli to the induced formation of “pits” in the cell walls and cell membrane distortion, DNA could condense and then leakage of the cytoplasmic components could occur due to Entrance of periplasm through these pits. Similarly toxic effects of engineered nanomaterials on other nitrifying bacteria (Yang et al., 2014), nitrogen fixing bacteria (Dimkpa 2014; Fan et al., 2014) and soil enzyme activities (Du et al., 2011; Zheng et al., 2011) are also reported.

Risk Management Strategies

After risk assessment associated to nano agrochemicals it is required to follow-up the effective risk management strategies. There are three most required aspects regarding risk mitigation viz., risk prevention, risk mitigation and risk communication (Figure 1).

Figure 1: Diagrammatic representation of toxicological risk assessment of nano materials on humans, animals, environment and whole ecosystem and management strategies

Risk prevention and mitigation strategies entail thorough assessment and identification of risk. This includes the adoption of less toxic, biodegradable, or environmentally friendly nano-materials for agrochemicals, ensuring the safe use of nano-materials, and minimizing exposure risks. Effective communication and comprehensive knowledge dissemination to stakeholders, including farmers and the general public, regarding the risks associated with nano-agrochemicals can greatly contribute to the better management of potential hazards and threats (Brunda and Kumawat, 2022).

Future Prospects in Nano-Agrochemicals and their Risk Management

For better understanding and assessment of threats associated to nano agrochemicals there is in depth studies required in relation to fates, modes and extent of exposure of nano agrochemicals, less toxic nano materials, green nano agrochemicals. As compared to other fields (Engineering, medical, sensors, electrical, etc.) there is a limited applications of nanotechnology in agricultural practices. To explore the potential of nanotechnology in agricultural sector, a great scope is there to researchers to scrutinise the risk and its management for safer use of nano agrochemicals.

Conclusion

Nanotechnology indeed holds the promise of revolutionizing agriculture in the future, offering a sustainable alternative to conventional agricultural inputs through the use of nano-agrochemicals. These nano-agrochemicals have the potential to deliver active ingredients with precision, enabling controlled release and minimizing runoff and residual contaminations, thus promoting more environmentally friendly and efficient agricultural practices. Although the nano chemicals have several pros over conventional one but they needs to be used carefully to avoid the risks associated. Furthermore research is needed for identification and mitigation of risks associated to nano agrochemicals before commercialization.

References

Kone, B.C., Kaleta, M., Gullans, S.R., 1988. Silver ion (Ag+) induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal

Shin, S.H., Ye, M.K., Kim, H.S., Kang, H.S., 2007. The effects of nano-silver on the proliferation and cytokine...
expression by peripheral blood mononuclear cells. *International Immunopharmacology* 7(13), 1813-1818. DOI: 10.1016/j.intimp.2007.08.025.

