Nano-Agrochemicals: Risk Assessment and Management Strategies


  • Mahendra Prasad Crop Production Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh (284 003), India
  • Sonu Kumar Mahawer Crop Production Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh (284 003), India



Environment, Human health, Nano-Agrochemical, Nanomaterial, Threats


Application of nanotechnology in agriculture especially in the form of nano agrochemicals is increasing nowadays. Agrochemicals such as fertilizers, soil amendments, soil conditioners, pesticides and plant growth promoting hormones have both pros and cons. To overcome the constraints of conventional agrochemicals researchers are focusing on nano agrochemicals. Apart from the high potential and effectiveness these chemicals also have some threats to the human health, environment and ecological balances. With proper assessment of risks associated to these nano agrochemicals threats can be minimised and the potential of nanotechnology in agriculture can be explored to the greater extent. After assessment the risks could be managed by applying three thumb rules as risk prevention, risk mitigation and risk communication. In depth research is required to explore the potential of nanotechnology in agriculture.


Download data is not yet available.


Abdel-Aziz, H.M.M., Hasaneen, M.N.A., Omer, A.M., 2016. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research 14(1), e0902. DOI: 10.5424/sjar/2016141-8205. DOI:

Anonymous, 2022. Agrochemicals. In: (website). Available at: Accessed on: June 4, 2022.

Antisari, L.V., Carbone, S., Gatti, A., Vianello, G., Nannipieri, P., 2013. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biology and Biochemistry 60, 87-94. DOI: 10.1016/j.soilbio.2013.01.016. DOI:

Atta, S., Bera, M., Chattopadhyay, T., Paul, A., Ikbal, M., Maiti, M.K., Singh, N.D.P., 2015. Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: for controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Advances 5(106), 86990-86996. DOI: 10.1039/C5RA17121K. DOI:

Bai, R., Zhang, L., Liu, Y., Li, B., Wang, L., Wang, P., Autrup, H., Beer, C., Chen, C., 2014. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicology Letters 226(1), 70-80. DOI: 10.1016/j.toxlet.2014.01.041. DOI:

Bakshi, M., Abhilash, P.C., 2020. Nanotechnology for soil remediation: Revitalizing the tarnished resource. Chapter 17. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities. (Eds.) Singh, P., Borthakur, A., Mishra, P.K. and Tiwary, D. Elsevier. pp. 345-370. DOI: 10.1016/B978-0-12-818598-8.00017-1. DOI:

Bollag, J.M., Myers, C.J., Minard, R.D., 1992. Biological and chemical interactions of pesticides with soil organic matter. Science of the Total Environment 123-124, 205-217. DOI: 10.1016/0048-9697(92)90146-j. DOI:

Brunda, B.N., Kumawat, R., 2022. Green synthesis of silver nanoparticles and their impact on plant microbial symbioses. The Pharma Innovation Journal 11(12), 6076-6078.

Changmei, L., Chaoying, Z., Junqiang, W., Guorong, W., Mingxuan, T., 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science 21(3), 168-171.

Chen, J.H., Wang, Y.J., Zhou, D.M., Cui, Y.X., Wang, S.Q., Chen, Y.C., 2010. Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cd(II) on the soils amended with nanoscale hydroxyapatite. Environmental Progress & Sustainable Energy 29(2), 233-241. DOI: 10.1002/ep.10371. DOI:

Chen, M., Yang, Z., Wu, H., Pan, X., Xie, X., Wu, C., 2011. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. International Journal of Nanomedicine 6, 2873-2877. DOI: 10.2147/IJN.S23945. DOI:

Chhipa, H., 2017. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15(1), 15-22. DOI: 10.1007/s10311-016-0600-4. DOI:

Choudhury, S.R., Pradhan, S., Goswami, A., 2012. Preparation and characterisation of acephate nano-encapsulated complex. Nanoscience Methods 1(1), 9-15. DOI: 10.1080/17458080.2010.533443. DOI:

DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R., Sultan, Y., 2010. Nanotechnology in fertilizers. Nature Nanotechnology 5(2), 91. DOI: 10.1038/nnano.2010.2. DOI:

Dhaliwal, S.S., Singh, J., Taneja, P.K., Mandal, A., 2019. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environmental Science and Pollution Research 27(2), 1319-1333. DOI: 10.1007/s11356-019-06967-1. DOI:

Dimkpa, C.O., 2014. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? Journal of Basic Microbiology 54(9), 889-904. DOI: 10.1002/jobm.201400298. DOI:

Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H., 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring 13(4), 822-828. DOI: 10.1039/C0EM00611D. DOI:

El-Temsah, Y.S., Joner, E.J., 2012. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89(1), 76-82. DOI: 10.1016/j.chemosphere.2012.04.020. DOI:

Fan, R., Huang, Y.C., Grusak, M.A., Huang, C.P., Sherrier, D.J., 2014. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. Science of the Total Environment 466-467, 503-512. DOI: 10.1016/j.scitotenv.2013.07.032. DOI:

Goswami, P., Yadav, S., Mathur, J., 2019. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today 6(2), 232-242. DOI: 10.14719/pst.2019.6.2.502. DOI:

He, X., Deng, H., Hwang, H.M., 2019. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27(1), 1-21. DOi: 10.1016/j.jfda.2018.12.002. DOI:

Hossain, S.T., Mukherjee, S.K., 2013. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. Journal of Hazardous Materials 260, 1073-1082. DOI: 10.1016/j.jhazmat.2013.07.005. DOI:

Iavicoli, I., Leso, V., Beezhold, D.H., Shvedova, A.A., 2017. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology 329, 96-111. DOI: 10.1016/j.taap.2017.05.025. DOI:

Iavicoli, I., Leso, V., Fontana, L., Bergamaschi, A., 2011. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies. European Review for Medical and Pharmacological Sciences 15(5), 481-508.

Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Dashti, S., 2016. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107(2), 265-276. DOI: 10.14720/aas.2016.107.2.01. DOI:

Joseph, T., Morrison, M., 2006. Nanotechnology in Agriculture and Food: A Nanoforum Report. In: nanowerk (website). Available at: Accessed on: January 6, 2023.

Jośko, I., Oleszczuk, P., Futa, B., 2014. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232-234, 528-537. DOI: 10.1016/j.geoderma.2014.06.012. DOI:

Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Kannan, N., 2013. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. Journal of Nanoscience and Nanotechnology 13(1), 678-685. DOI: 10.1166/jnn.2013.6880. DOI:

Kim, S., Kim, J., Lee, I., 2011. Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chemistry and Ecology 27(1), 49-55. DOI: 10.1080/02757540.2010.529074. DOI:

Kone, B.C., Kaleta, M., Gullans, S.R., 1988. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. The Journal of Membrane Biology 102(1), 11-19. DOI: 10.1007/BF01875349. DOI:

Kookana, R.S., Boxall, A.B.A., Reeves, P.T., Ashauer, R., Beulke, S., Chaudhry, Q., Cornelis, G., Fernandes, T.F., Gan, J., Kah, M., Lynch, I., Ranville, J., Sinclair, C., David Spurgeon, D., Tiede, K., Van den Brink, P.J., 2014. Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry 62(19), 4227-4240. DOI: 10.1021/jf500232f. DOI:

Liu, S., Qi, X., Han, C., Liu, J., Sheng, X., Li, H., Luo, A., Li, J., 2017. Novel nano-submicron mineral-based soil conditioner for sustainable agricultural development. Journal of Cleaner Production 149, 896-903. DOI: 10.1016/j.jclepro.2017.02.155. DOI:

Liu, J., Cai, H., Mei, C., Wang, M., 2015. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science & Engineering 9(5), 905-911. DOI: 10.1007/s11783-015-0786-x. DOI:

Liu, R., Lal, R., 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514, 131-139. DOI: 10.1016/j.scitotenv.2015.01.104. DOI:

Mahdavi, S., Afkhami, A., Jalali, M., 2015. Reducing leachability and bioavailability of soil heavy metals using modified and bare Al2O3 and ZnO nanoparticles. Environmental Earth Sciences 73(8), 4347-4371. DOI: 10.1007/s12665-014-3723-6. DOI:

Manikandan, A., Subramanian, K.S., 2016. Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. International Journal of Plant & Soil Science 9(4), 1-9. DOI: 10.9734/IJPSS/2016/22103. DOI:

McAuliffe, M.E., Perry, M.J., 2007. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology 1(3), 204-210. DOI: 10.1080/17435390701675914. DOI:

Memarizadeh, N., Ghadamyari, M., Adeli, M., Talebi, K., 2014. Linear-dendritic copolymers/ indoxacarb supramolecular systems: Biodegradable and efficient nano-pesticides. Environmental Science: Processes & Impacts 16(10), 2380-2389. DOI: 10.1039/c4em00321g. DOI:

Michálková, Z., Komárek, M., Šillerová, H., Puppa, L.D., Joussein, E., Bordas, F., Vaněk, A., Vaněk, O., Ettler, V., 2014. Evaluating the potential of three Fe-and Mn-(nano) oxides for the stabilization of Cd, Cu and Pb in contaminated soils. Journal of Environmental Management 146, 226-234. DOI: 10.1016/j.jenvman.2014.08.004. DOI:

Morla, S., Rao, C.R., Chakrapani, R., 2011. Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. Journal of Chemical, Biological and Physical Sciences (JCBPS) 1(2), 328.

Moschini, E., Gualtieri, M., Gallinotti, D., Pezzolato, E., Fascio, U., Camatini, M., Mantecca, P., 2010. Metal oxide nanoparticles induce cytotoxic effects on human lung epithelial cells A549. Chemical Engineering Transaction 22, 29-34. DOI: 10.3303/CET1022004.

Mwaanga, P., 2018. Risks, uncertainties, and ethics of nanotechnology in agriculture. Chapter 8. In: New Visions in Plant Science. (Ed.) Çelik, Ö. IntechOpen, London. DOI: 10.5772/intechopen.76590. DOI:

Papanikolaou, N.E., Kalaitzaki, A., Karamaouna, F., Michaelakis, A., Papadimitriou, V., Dourtoglou, V., Papachristos, D.P., 2018. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators. Environmental Science and Pollution Research 25(11), 10243-10249. DOI: 10.1007/s11356-017-8596-2. DOI:

Peters, R.J.B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H.J.P., Mech, A., Moniz, F.B., Pesudo, L.Q., Rauscher, H., Schoonjans, R., Undas, A.K., Vettori, M.V., Weigel, S., Aschberger, K., 2016. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science and Technology 54, 155-164. DOI: 10.1016/j.tifs.2016.06.008. DOI:

Qazi, G., Dar, F.A., 2020. Nano-agrochemicals: Economic potential and future trends. In: Nanobiotechnology in Agriculture. (Eds.) Hakeem, K. and Pirzadah, T. Nanotechnology in the Life Sciences, Springer, Cham. pp. 185-193. DOI: 10.1007/978-3-030-39978-8_11. DOI:

Qian, K., Shi, T., Tang, T., Zhang, S., Liu, X., Cao, Y., 2011. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchimica Acta 173(1-2), 51-57. DOI: 10.1007/s00604-010-0523-x. DOI:

Rajonee, A.A., Nigar, F., Ahmed, S., Huq, S.M.I., 2016. Synthesis of nitrogen nano fertilizer and its efficacy. Canadian Journal of Pure and Applied Sciences 10(2), 3913-3919.

Reddy, A.V.B., Madhavi, V., Reddy, K.G., Madhavi, G., 2013. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: Effect of pH and aluminium salts. Journal of Chemistry 2013, 521045. DOI: 10.1155/2013/521045. DOI:

Roh, J.Y., Park, Y.K., Park, K., Choi, J., 2010. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environmental Toxicology and Pharmacology 29(2), 167-172. DOI: 10.1016/j.etap.2009.12.003. DOI:

Scott, N.R., Chen, H., Cui, H., 2018. Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. Journal of Agriculture and Food Chemistry 66(26), 6451-6456. DOI: 10.1021/acs.jafc.8b00964. DOI:

Shang, Y., Hasan, M.K., Ahammed, G.J., Li, M., Yin, H., Zhou, J., 2019. Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14), 2558. DOI: 10.3390/molecules24142558. DOI:

Shin, S.H., Ye, M.K., Kim, H.S., Kang, H.S., 2007. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. International Immunopharmacology 7(13), 1813-1818. DOI: 10.1016/j.intimp.2007.08.025. DOI:

Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., Bracale, M., 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PloS One 8(7), e68752. DOI: 10.1371/journal.pone.0068752. DOI:

Yang, Y., Quensen, J., Mathieu, J., Wang, Q., Wang, J., Li, M., Tiedje, J.M., Alvarez, P.J.J., 2014. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research 48, 317-325. DOI: 10.1016/j.watres.2013.09.046. DOI:

Zafar, H., Ali, A., Ali, J.S., Haq, I.U., Zia, M., 2016. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Frontiers in Plant Science 7, 535. DOI: 10.3389/fpls.2016.00535. DOI:

Zheng, X., Chen, Y., Wu, R., 2011. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environmental Science & Technology 45(17), 7284-7290. DOI: 10.1021/es2008598. DOI:




How to Cite

Prasad, M., & Mahawer, S. K. (2023). Nano-Agrochemicals: Risk Assessment and Management Strategies. Plant Health Archives, 1(2), 66–72.



Review Article